
Lesson

EVO VACUUM SIMULATION

TOPICS

METHOD

AGES

DURATION

OzoBlockly 30-40 Minutes

Grades 7-12

Associate Professor Emeritus
Northern Illinois University

rborn2@niu.edu

Richard Born

CREATED BY

Robotics, Computer Science,
Programming

1	
	

	
OzoBlockly	Lesson:	

	EvoVac—Robotic	Vacuum	Cleaner	Simulation	
	 	

By	Richard	Born	
Associate	Professor	Emeritus	
Northern	Illinois	University	

rborn2@niu.edu	
	

Introduction	

The	idea	of	not	having	to	clean	floors	and	carpets	in	your	home	is	apparently	quite	luring	to	consumers.		With	
dozens	of	robotic	vacuum	cleaner	manufacturers	out	there,	customers	certainly	need	to	do	their	homework	
before	purchasing.		To	mention	just	a	few,	you	can	buy	Black+Decker,	bObiPet,	Dyson	360	Eye,	Ecovacs	
Deebot,	Hoover	Quest,	iLife	A4,	Metapo	Infinuvo,	iRobot	Roomba,	iTouchless,	LG	Hom-Bot	Square,	Neato	
Botvac,	Rollibot	BL618,	Samsung	POWERbot,	and	V-Bot	P3.		Prices	vary	from	a	couple	hundred	dollars	to	more	
than	a	kilobuck.		Features	may	include	remote	control	from	your	iPhone	or	Android,	automatic	recharging	
from	a	docking	base,	the	ability	to	pick	up	pet	hair	and	clean	paw	prints,	UV	disinfection,	stair	detection	to	
avoid	falling,	staying	within	preset	boundaries,	maneuverability	under	and	around	furniture,	scheduling,	and	
simultaneous	vacuuming/mopping/sweeping.	

The	robotic	vacuum	cleaner	is	just	one	example	of	the	proliferation	of	robots	for	a	large	variety	of	functions	in	
modern	society.		But	it	does	help	to	point	out	the	need	for	robotic	engineers	and	programmers,	as	well	as	the	
importance	of	teaching	robotics	in	the	classroom.		In	this	lesson,	students	will	study	and	run	an	OzoBlockly	
program	for	which	Evo	simulates	a	robotic	vacuum	cleaner.		No,	Evo	will	not	actually	be	picking	up	dust	while	
moving,	as	this	would	certainly	clog	his	wheel	mechanism.		Nor	will	he	be	simulating	all	of	the	features	
discussed	in	the	previous	paragraph.	

We’ll	have	Evo	maneuvering	a	rectangular	room	in	the	form	of	a	small	cardboard	box,	avoiding	walls	as	he	
moves	back-and-forth	across	the	room.		We’ll	also	make	Evo	put	his	IR	sensors	to	use	by	helping	him	turn	
himself	when	he	approaches	a	wall	to	make	the	next	swipe	of	the	room.		In	the	process	of	doing	this	lesson,	
students	will	gain	experience	in	working	with	blocks	including	if…else,	loops,	several	free	movement	blocks,	
and	the	read	proximity	sensor	block.	

See	Figure	1(a),	which	diagrams	our	plan	on	how	Evo	is	to	move,	starting	in	the	lower	left	corner	of	the	room	
and	traversing	the	room	as	shown	by	the	arrowed	line	segments.		Figure	1(b)	is	a	photo	showing	Evo	at	the	
start	location	in	the	room,	represented	by	a	cardboard	box	7”	x	11”	in	size.		Figure	1(c)	is	a	long	exposure	
photograph	showing	the	trail	of	Evo’s	top	light	as	he	“vacuums”	the	box.		We	want	the	top	light	to	be	green	
while	Evo	travels	unimpeded,	blue	as	he	nears	a	wall,	and	red	as	he	turns	around	for	the	next	swipe	of	the	
room.		

2	
	

	

Figure	1	

Figure	1(c)	shows	that	there	is	some	limitation	to	the	rotation	precision	of	Evo.		As	pointed	out	in	the	online	
OzoBlockly	Reference,	this	is	due	to	a	number	of	factors	including	traction	differences	between	different	
operating	surfaces	(wheel	slippage),	inertia,	speed	calibration,	and	hardware	design	limitations.		However,	the	
user	can	tune	some	for	these	limitations	by	adjusting	parameters	of	the	move	and	rotate	blocks.	

You	are	encouraged	to	view	the	short	video	(https://www.youtube.com/watch?v=5XbW76gd5So)	that	
accompanies	this	document.	Doing	so	will	provide	a	better	feeling	for	what	our	OzoBlockly	program	does.	

The	OzoBlockly	Program	

Figure	2	shows	the	blocks	making	up	the	OzoBlockly	program	that	allows	Evo	to	simulate	a	simple	robotic	
vacuum	cleaner.		The	discussion	that	follows	will	detail	the	purpose	of	the	blocks,	some	being	straight	forward	
and	others	more	subtle	in	what	they	accomplish.		

	 	

https://www.youtube.com/watch?v=5XbW76gd5So

3	
	

	

Figure	2	

First,	let’s	discuss	the	variable	ninetyDeg	(Deg	meaning	“Degrees”),	which	is	initialized	at	program	start	to	the	
value	-90	and	the	yellow	rotate	and	move	blocks	near	the	center	of	the	program.		As	indicated	in	the	online	
OzoBlockly	Reference,	negative	rotations	turn	Evo	to	the	right,	while	positive	rotations	turn	Evo	to	the	left.		
Since	we	are	starting	Evo	in	the	lower	left	corner	of	the	box,	when	he	reaches	the	top	he	needs	to	turn	right,	
then	take	a	step	forward	toward	the	right	side	of	the	box,	and	then	make	another	right	turn	so	that	he	is	
facing	the	bottom	of	the	box.		This	explains	why	the	variable	ninetyDeg	is	initialized	as	negative.		When	Evo	
reaches	the	bottom	of	the	box,	he	needs	to	repeat	this	process	by	making	left	turns.		This	is	accomplished	by	
reversing	the	sign	of	the	variable	ninetyDeg,	which	occurs	at	the	end	of	the	do	portion	of	the	if…else	block.	

The	top	LED	is	initially	set	to	green	and	then	the	user	is	given	5	seconds	to	place	Evo	in	the	lower	left	corner	of	
the	box	facing	toward	the	top	of	the	box.		We	want	Evo	to	execute	free	movement,	so	the	wheels	speeds	are	
both	set	to	30	mm/s.		The	rest	of	the	program	consists	of	a	repeat	forever	loop	in	which	Evo	simulates	the	
vacuuming	of	the	room.		To	keep	things	simpler,	we’re	not	going	to	worry	about	what	Evo	needs	to	do	when	
finishing	vacuuming.		The	user	will	simply	lift	Evo	out	of	the	box	and	press	the	button	once	to	turn	Evo	off.	

4	

Now	let’s	discuss	what	happens	inside	of	the	repeat	forever	loop.		The	left	and	right	sensors	are	read,	and	the	
average	of	these	two	readings	is	stored	in	the	variable	level.		According	to	the	online	OzoBlockly	Reference,	
level	will	turn	out	to	be	a	number	between	0	and	127,	with	0	indicating	no	obstacle	is	detected,	and	increasing	
values	indicating	that	Evo	is	getting	closer	and	closer	to	the	wall	it	is	approaching.	

Now	let’s	discuss	how	to	decide	when	the	top	LED	is	green,	blue,	or	red.		We	want	it	green	when	Evo	is	moving	
unimpeded,	blue	when	it	is	getting	close	to	a	wall	and	red	when	it	is	turning	around.		We	found,	again	through	
trial	and	error,	that	if	the	average	IR	sensor	level	is	greater	than	20,	Evo	was	getting	relatively	close	to	the	wall,	
so	in	that	case	we	set	the	top	LED	to	blue.		If	the	level	is	greater	than	62,	Evo	was	close	enough	to	a	wall	that	it	
was	time	to	turn	around.		In	that	case	we	set	the	top	LED	to	red.		After	turning	around,	the	top	LED	is	again	set	
to	green	as	Evo	is	moving	unimpeded	toward	a	wall.	

5	
	

Student	Activities	

1. After	viewing	the	video	(https://www.youtube.com/watch?v=5XbW76gd5So)	and	discussing	the	
OzoBlockly	program,	motivate	the	students	by	letting	them	load,	run	and	play	with	the	program	
EvoVacuumSimulation.ozocode.	

2. Then	ask	the	class	to	modify	the	program	by	performing	the	following	program	maintenance	task:	
	

In	the	program	that	was	discussed	in	class,	we	didn’t	consider	what	Evo	needs	to	do	
when	finishing	vacuuming.		We	just	had	an	infinite	loop	and	stopped	Evo	by	pressing	his	
button.		Modify	the	program	so	that	EvoVac	stops	after	making	10	swipes	of	the	room.		
Do	this	by	the	use	of	a	do	while	loop.	

https://www.youtube.com/watch?v=5XbW76gd5So

